[口头报告]Advancements in Iron-Based Oxygen Carriers for Chemical Looping Combustion: From Bauxite Waste to Valuable Resources
00
days
00
hours
00
minutes
00
seconds
00
days
00
hours
00
minutes
00
seconds

[口头报告]Advancements in Iron-Based Oxygen Carriers for Chemical Looping Combustion: From Bauxite Waste to Valuable Resources

Advancements in Iron-Based Oxygen Carriers for Chemical Looping Combustion: From Bauxite Waste to Valuable Resources
编号:384 访问权限:仅限参会人 更新:2024-05-15 19:49:23 浏览:308次 口头报告

报告开始:暂无开始时间 (Asia/Shanghai)

报告时间:暂无持续时间

所在会议:[暂无会议] » [暂无会议段]

暂无文件

摘要
Chemical looping combustion (CLC) is a cutting-edge approach that enables power generation and carbon capture to occur simultaneously. For CLC technology to be commercially viable, it's essential to have oxygen carriers (OCs) that are not only durable and reactive but also cost-effective. This is because the degradation or sintering of OCs can reduce the efficiency of the process and lead to higher costs. Despite extensive research on common materials like iron, nickel, and copper-based OCs, there has been a lack of focus on improving both the durability and reactivity of OCs, particularly concerning the risk of element migration during degradation.
At the University of Kentucky, researchers are developing iron-based OCs, utilizing red mud from the plentiful waste of bauxite, to implement affordable chemical looping methods. In the CLC process using iron-based OCs, iron transitions between oxidation states within the reactor, which may cause degradation and potential iron migration, impacting the particles' surface structure, porosity, and strength.
The process of making use of the fine particles resulting from OC degradation in CLC has not been thoroughly explored. Present findings indicate that it's feasible to separate and concentrate iron from these fines, achieving an iron concentration as high as 89% Fe2O3 from bauxite waste fines that originally contained 43% Fe2O3. This method turns the by-products of CLC attrition into a valuable commodity. Additional details will be presented at the upcoming conference.
关键字
Iron-based oxygen carrier,Chemical looping combustion,Attrition,Iron enrichment,Bauxite waste
报告人
Neng Huang
University of Kentucky

发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

投稿事宜:张老师
电话:0516-83995113
会务事宜:张老师
电话:0516-83590258
酒店事宜:张老师
电话:15852197548
会展合作:李老师
电话:0516-83590246
登录 注册缴费 提交摘要 酒店预订