[口头报告]On-site Rapid Analysis of Pollutants in Water Based on Separation-Surface enhanced Raman scattering Combined Technology
00
days
00
hours
00
minutes
00
seconds
00
days
00
hours
00
minutes
00
seconds

[口头报告]On-site Rapid Analysis of Pollutants in Water Based on Separation-Surface enhanced Raman scattering Combined Technology

On-site Rapid Analysis of Pollutants in Water Based on Separation-Surface enhanced Raman scattering Combined Technology
编号:315 稿件编号:315 访问权限:仅限参会人 更新:2024-05-19 15:27:48 浏览:394次 口头报告

报告开始:2024年05月31日 15:15 (Asia/Shanghai)

报告时间:15min

所在会议:[S9] Environmental Pollution Control and Ecological Restoration » [S9-2] Afternoon of May 31st

暂无文件

摘要
With the rapid growth of the global population, agricultural and industrial activities have led to a significant increase in the levels of various organic pollutants in water, which has serious impacts on the environment and human health. Therefore, the development of new materials and technologies for effective detection and removal of pollutants in water has always been the focus of research. Based on this, we explored highly sensitive and rapid analysis methods for pollutants in water based on separation-surface enhanced Raman scattering (SERS). Covalent organic frameworks have great potential as adsorbents due to their tailorable functionality, low density and high porosity. However, fabrications of macroscopic objects are challenging but of great significance to give full play to its chemical functionality and porosity. Therefore, we synthesized a sulfonated COF-based adsorbent, namely covalent organic frameworks/carbon nitride/graphene oxide/ gold nanoparticles aerogel, by hydrothermal method. Firstly, graphene was introduced as a template to form a g-C3N4/GO heterojunction. COFs grow in situ along the heterojunction surface, and then Au NPs are further modified by electrostatic interaction. After freeze-drying, an aerogel with ultrathin porous structure was obtained. The aerogel exhibits excellent adsorption performance and can be used to selectively remove positively charged organic pollutants in water. Au NPs can form a “hot spot” region to enable in situ SERS detection of organic pollutants. In addition, the aerogel was used as photocatalytic materials for decomposing organic pollutants to generate nontoxic inorganic small molecules under visible light irradiation, and maintained good adsorption performance and SERS stability in 5 cycles. This method enables rapid removal of organic pollutants in water and highly sensitive sensing, providing an efficient approach for water environmental treatment.
 
关键字
pollutants; efficient adsorption; degradation; SERS analysis
报告人
Lulu Qu
professor Jiangsu Normal University

稿件作者
迎弟 张 江苏师范大学
国海 杨 江苏师范大学
陆陆 渠 江苏师范大学
发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

投稿事宜:张老师
电话:0516-83995113
会务事宜:张老师
电话:0516-83590258
酒店事宜:张老师
电话:15852197548
会展合作:李老师
电话:0516-83590246
登录 注册缴费 提交摘要 酒店预订