[口头报告]Off-policy reinforcement learning for input-constrained optimal control of dual-rate industrial processes
00
days
00
hours
00
minutes
00
seconds
00
days
00
hours
00
minutes
00
seconds

[口头报告]Off-policy reinforcement learning for input-constrained optimal control of dual-rate industrial processes

Off-policy reinforcement learning for input-constrained optimal control of dual-rate industrial processes
编号:28 稿件编号:251 访问权限:仅限参会人 更新:2024-05-20 09:56:41 浏览:481次 口头报告

报告开始:2024年05月30日 15:40 (Asia/Shanghai)

报告时间:20min

所在会议:[S4] Intelligent Equipment Technology » [S4-2] Afternoon of May 30th-2

暂无文件

摘要
Real industrial operating systems are not ideally immune to unmodeled dynamics, and industrial processes usually operate on multiple time scales, which poses a problem for operational optimization of industrial processes. In order to better address these difficulties, a composite compensated controller is designed to solve the input-constrained optimal operation control (OOC) problem in dual time scales by integrating reinforcement learning (RL) techniques and singular perturbation (SP) theory. Within this control framework, a self-learning compensatory control method is proposed to optimize the operational metrics of a dual time-scale industrial system with uncertain dynamic parts to the desired values. Finally, the effectiveness of the method is verified by an industrial mixed separation thickening process (MSTP) example.
关键字
Reinforcement Learning, Dual Time Scales, Optimal Operational Control, Singular perturbation Theory
报告人
Haoran Luan
LiaoNing Petrochemical University

稿件作者
皓然 栾 辽宁石油化工大学
瑞元 邹 辽宁石油化工大学
金娜 李 辽宁石油化工大学
发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

投稿事宜:张老师
电话:0516-83995113
会务事宜:张老师
电话:0516-83590258
酒店事宜:张老师
电话:15852197548
会展合作:李老师
电话:0516-83590246
登录 注册缴费 提交摘要 酒店预订