[口头报告]Achieving Strong Coherency for a Composite Electrode via One-Pot Method with Enhanced Electrochemical Performance in Reversible Solid Oxide Cells
Achieving Strong Coherency for a Composite Electrode via One-Pot Method with Enhanced Electrochemical Performance in Reversible Solid Oxide Cells
编号:259
稿件编号:131 访问权限:仅限参会人
更新:2024-05-15 17:48:54
浏览:405次
口头报告
报告开始:暂无开始时间 (Asia/Shanghai)
报告时间:暂无持续时间
所在会议:[暂无会议] » [暂无会议段]
暂无文件
摘要
The oxygen electrode with a fast oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and sufficient durability plays a pivotal role in reversible solid oxide cells (RSOCs). Here, we demonstrate a NdBa0.5Ca0.5Co1.5Fe0.5O5+δ@Gd0.1Ce0.9O2−δ (NBCCF@GDC) composite oxygen electrode via a one-pot method for exhibiting strong coherency, which result in boosting the electrochemical performance of RSOCs. The NBCCF@GDC electrode yields a very low polarization resistance (0.106 Ω cm2 at 800 °C), high electrolysis current density (1.45 A cm–2 with 70 vol % absolute humidity at 1.3 V), and high power density (∼1.3 W cm–2 at 800 °C) and shows excellent reversibility and stability. Notably, strong coherency in these NBCCF@GDC composite materials was successfully revealed by HT-XRD, XPS, STEM, and EELS. The phase contiguity and interfacial coherence between NBCCF and GDC increase the Co oxidation state and the number of active sites, which enhanced the electrocatalytic activity for perovskites. Overall, this work demonstrates a highly desirable strategy for the production of functionalized electrodes for next-generation reversible solid oxide cells.
关键字
one-pot method, oxygen electrode, NBCCF@GDC composite, reversible solid oxide cells, strong coherency.
发表评论