[口头报告]Design of efficient chemical pre-lithiation reagents and their use in lithium-ion batteries
00
days
00
hours
00
minutes
00
seconds
00
days
00
hours
00
minutes
00
seconds

[口头报告]Design of efficient chemical pre-lithiation reagents and their use in lithium-ion batteries

Design of efficient chemical pre-lithiation reagents and their use in lithium-ion batteries
编号:10 稿件编号:208 访问权限:仅限参会人 更新:2024-05-15 17:47:38 浏览:372次 口头报告

报告开始:2024年05月30日 15:10 (Asia/Shanghai)

报告时间:10min

所在会议:[S7] Minerals and Advanced Energy Materials » [S7-1] Afternoon of May 30th

暂无文件

摘要
Lithium-ion batteries (LIBs) have been widely used as a new energy storage system with high energy density and long cycle life. However, the solid electrolyte interfacial (SEI) layer formed on the surface of anode consumes excess active lithium during the initial cycle, resulting in an initial irreversible capacity loss (ICL) and reducing the overall electrochemical performance. To solve the critical issue, pre-lithiation technology has been accepted as one of the most promising strategies. Due to the pre-lithiated treatment provides additional active lithium to compensate for the ICL and effectively improves initial Coulombic efficiency (ICE), leading to raising the working voltage, increasing the Li+ concentration, as well as improving the energy density and cycle stability of LIBs. In this overview, the causes of ICL in LIBs are analyzed from different perspectives, and various pre-lithiation strategies are systematically classified and summarized. Finally, some current problems and development prospects in this field are summarized, with prospects for realizing industrialized technologies.
Graphite (Gr) is a low cost, high energy density anode material for lithium-ion batteries (LIBs). However, Gr has an obvious drawback of low initial Coulombic efficiency (ICE). To address this issue, this paper proposes a straightforward and effective pre-lithiation method for pre-lithiating Gr anodes. This is achieved primarily by selecting the potential difference between the 2-methyltetrahydrofuran solution of phenanthrene-lithium (Ph-Li-2-Me-THF), which has a low redox potential, and Gr to spontaneously drive the reaction. Ph-Li-2-Me-THF has a low redox potential of 0.1 V, allowing for quick pre-lithiation without co-embedding of the solvent by controlling immersion time. The pre-lithiated Gr (pGr) surface was pre-formed with a solid electrolyte interface (SEI) layer, which reacted on contact with the electrolyte to increase the stability and densification of the SEI layer, which consisted of homogeneous Li2CO3, ROCO2Li and LiF, resulting in high ICE, rate capability and cycling performance. Thanks to these advantages, full cells assembled with commercial LiFePO4 (LFP) and NCM811 cathodes have significantly improved ICE, cycling performance and energy density, showing promising and valuable applications.

 
关键字
Lithium-ion batteries; irreversible capacity loss; active lithium loss; solid electrolyte interfacial layer; initial coulombic efficiency
报告人
Shuang Li
China University of Mining and Technology

稿件作者
Shuang Li China University of Mining and Technology
Jiangmin Jiang China University of Mining and Technology
发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

投稿事宜:张老师
电话:0516-83995113
会务事宜:张老师
电话:0516-83590258
酒店事宜:张老师
电话:15852197548
会展合作:李老师
电话:0516-83590246
登录 注册缴费 提交摘要 酒店预订