[Oral Presentation]Design of infrared small object tracking system based on ZYNQ
00
days
00
hours
00
minutes
00
seconds
00
days
00
hours
00
minutes
00
seconds

[Oral Presentation]Design of infrared small object tracking system based on ZYNQ

Design of infrared small object tracking system based on ZYNQ
ID:24 Submission ID:212 View Protection:ATTENDEE Updated Time:2024-05-15 17:47:23 Hits:533 Oral Presentation

Start Time:2024-05-31 17:40 (Asia/Shanghai)

Duration:20min

Session:[S4] Intelligent Equipment Technology » [S4-8] Afternoon of May 31st-8

No files

Abstract
Abstract: Deep learning algorithms for tracking small, dim objects in infrared image are widely used in smart security and unmanned inspection. However, challenges arise in deploying these algorithms on compact devices, such as drones and unmanned boats, due to their large model size and computational complexities. These challenges are further exacerbated by constraints on load, space, and power. To overcome these issues, a tracking system for small and dim infrared objects has been developed, utilizing the ZYNQ platform's heterogeneous computing architecture (ARM+FPGA). This system takes full advantage of ZYNQ's programmable hardware and software to optimize the object tracking algorithm network and accelerate neural network parallel computing. The aim is to achieve real-time inference on embedded platforms. A lightweight tracking algorithm, featuring Siamese networks and asymmetric multi-attention modules, has been proposed. This algorithm is quantized to INT8, effectively reducing its complexity and memory access costs. Additionally, a parallelized pipeline circuit, designed according to the computational characteristics of convolutional neural networks and asymmetric multi-attention modules, facilitates accelerated computation. Experimental validation on various hardware platforms using public datasets has shown promising results. The ZYNQ-based system for tracking small and dim infrared objects operates at a low power consumption of 4.23W. It achieves an average computational speed of 125.85 GOPS and a tracking frame rate of 68.07 FPS. These results indicate a significant performance improvement, over nine times that of the i5-9400 CPU.
 
Keywords
convolutional neural networks; object tracking; hardware accelerator; pipelines; parallel processing systems; real-time; quantization
Speaker
Xu Wang
硕士生 China University of Mining and Technology

Submission Author
Jun Wang China University of Mining and Technology
Xu Wang China University of Mining and Technology
Yulian Li China University of Mining and Technology
Zhengwen Shen China University of Mining and Technology
Zhicheng Lv China University of Mining and Technology
Comment submit
Verification code Change another
All comments

Contact us

Abstract and Paper:Ms. Zhang
Tel:(0086)-516-83995113
General Affairs:Ms. Zhang
Tel:(0086)-516-83590258
Hotel Services:Ms. ZHANG
Tel:15852197548
Sponsorship and Exhibition:Mr. Li
Tel:(0086)-516-83590246
Log in Registration Submit Abstract Hotel